

53

International Journal of Advances in Engineering Research

This paper investigates and do comparison in the TCP Traffic control capabilities introduced in Linux Kernel

2.6 . The traffic grows exponentially and the service rate of the server decreases accordingly. This paper also

deals with different Scenarios of TCP Traffic. 'TCP Reno'(Traditional), TCP Vegas’, 'Westwood TCP' and

‘CUBIC

Keywords: 'TCP Traffic Control', 'TCP Reno', ‘TCP Vegas’, 'HighSpeed TCP', 'Westwood TCP', ‘CUBIC TCP’

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

STUDY AND ANALYSIS OF DIFFERENT TASTES IN TCP

TRAFFIC

Sarika Gupta [Agarwal], Dr. Rakesh Pathak

Department of Computer Science

ABSTRACT

INTRODUCTON

The Data Network traffic comprises of the packets flowing from a source to a destination. This traffic

and the network behaviour are extremely unpreditable in nature. Before a message needs to be sent , it

is broken down into small packets & transported that way from the source to thedestination.

The protocols responsible for this transport over TCP/IP networks are User Datagram Protocol (UDP)

& Transmission Control protocol (TCP). On an average, about 90% of the Internet traffic use TCP

which is a reliable, stream oriented protocol. TCP relies exclusively on the positive acknowledgement

& retransmission when an acknowledgement does not arrive within given time outperiod.

TCP provide flow control by using sliding window mechanism. With the help of sliding window link

control, the maximum possible throughput on TCP Connection may be determined. The throughput

depends on the window size, propagation delay & data rate. To increase TCP throughput, the

congestion has to bealleviated.

It was the first steps towards to move bulk data quickly over high speed data network and when data

arrives on a big pipe (A FAST LAN) and gets sent out a smaller pipe then bottleneck is occured which

is known as Congestion.. The congestion can lengthen the response time, reduced availability and

throughput. When network is overloaded with data then we say network is congested and to prevent

that the sender overloads the network is called congestion avoidance.

To tackle the congestion at network layer, dynamic routing may be used but these routing deals only

with the unbalanced load. Ultimately congestion is controlled by limiting the total amount of data

entering the Internet to the amount that the Internet can carry.In TCP flow & congestion control, the

receiver will only acknowledge frames & expand the window to the extent that it has buffer space

available. The rate at which a TCP object can send data is calculated by the rate of incoming ACKs to

previous segments with new credit. In TCP, the rate of ACK arrival is calculated by the bottleneck in

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

54

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

the round trip way between source & destination, & that bottleneck may be either the destination or the

Internet.

The data transfer of TCP starts from a slow start,in which TCP tries to increase its sending rate

exponentially, until it encounters the first loss. It then switches to another stage, called congestion

avoidance, in which TCP employs the Additive Increase ,Multiplicative decrease mechanism to

slowly adapt to the available bandwidth. On further congestion, the TCP goes into the Fast Recovery

&Fast Retransmission stages .In this scenario, when TCP do not receive an acknowledgment for a

packet after some timeout period, it assumes that this packet is lost. & then retransmits that packet and

doubles its retransmission timeout value(RTO) detecting packet loss. This process continues until the

packet is successfully transmitted & acknowledged. TCP tries to clear congestion by cutting its sending

rate inhalf.

Out of the many UNIX like kernels, Linux is a matured product and has a significant share in

worldwide server population dealing with TCP traffic under all kinds of traffic scenarios. Hence, the

TCP implementation in Linux has been tuned enough to meet the requirements of heavy duty

applications depending onit.

EXPERIMENTAL SETUP

We construct an asymmetric dumbbell sort of topology where two L2 switches are located at the

bottleneck between two end points. The end points consist of a set of HP Linux Systems running

custom client and server applications dedicated to high-speed TCP variant flows and background

traffic. Background traffic is generated by using various web basedapplications.

We use Linux hosts as communication end points communicating over 100Mbps link with MTU of

1500 bytes. The RTT of each background traffic is random. The socket buffer size of some client

machines is fixed to default 64KB while high-speed TCP machines are configured to have a very large

buffer so that the transmission rates of high-speed flows are only limited by the congestion control

algorithm. Two Layer 2 switches are deployed with four high-speed TCP machines which are tuned to

generate or forward high traffic. Each TCP variant has been used individually to analyze the

performance aspects.

The custom Java Client and Server programs are used to generate and receive high traffic end to end.

The Server TCP suffers from high traffic ingress and has to take corrective and further preventive

action evident from the analysis. As the Linux 2.6 TCP has pluggable modules now, we can inject and

eject appropriate modules dynamicallytoo.

The analysis has been done for TCP Reno and Vegas, TCP Westwood, TCP BIC and TCP CUBIC

individually and the results have been compared. The packet sniffer tool „Wireshark‟ has been used to

capture the live TCP traffic and generate logs/reports. A comparative study has also been done for

competing TCP modules.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

55

International Journal of Advances in Engineering Research

eoutexpi

Tahoewi

TCP Client

TCP Client

L2 Switch

L2 Switch

TCP Client

TCP Client

TCP Client

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Experimental Linux 2.6 Testbed Layout

This paper is organized as follows. Section II presents different scenarios of TCP Traffic. Section III

deals comparative study between these scenarios. Possible future work and concluding remarks are

presented in section IV.

DIFFERENT SCENARIOS OF TCP TRAFFIC

TCP starts from a stage,called slow start, in which TCP tries to increase its sending rate exponentially,

until it encounters the first loss. It then switches to another stage, called congestion-avoidance, in which

TCP employs the Additive Increase, Multiplicative Decrease mechanism to slowly adapt to the

available bandwidth. On further congestion , the TCP goes into the Fast Recovery and Fast

Retransmission stages, When TCP doesn't receive an acknowledgement for a packet after some time

out period, it assumes that this packet is lost, and then retransmits that packet and doubles its

retransmission time out value(RTO) for detecting packet loss. TCP tries to clear congestion by cutting

its sending rate inhalf.

i) a)TCP tahoe (1998, Free BSD 4.3 Tahoe) and TCP Reno (1990, FreeBSD 4.3Reno)

In Tahoe : Loss is detected when a

timduplicate acknowledgement is

received.

L2

Switch
res before an Acknowledgement is received or

llthen reduce congestion window to 1 MSS and

reset to slow start state. The fast retransmit algorithm first appeared in the 4.3 BSD Tahoe but it was

incorrectly followed by slow start.

b)TCP RENO : It comes with fast recovery algorithm. When duplicate acknowledgement received

by the receiver, it do the Fast Re -transmit the data without waiting timer to expire and enter in

congestion avoidance but not slow start is performed that mean it perform Fast Recovery.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

56

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Fast Recovery: It avoids slow start after a faster retransmit ,the reason behind is that the receipt of

duplicate acknowledgement tell us more than just a packet has been lost. Since the receiver can only

generate the duplicate acknowledgement . When another segment is received, that segment has left

the network and is in the receiver‟s buffer that is there is still data flowing between the two ends we

don't want to reduce the flow abruptly by going into slow start.

In Fast Recovery, After three duplicate Acknowledgement it retransmit the lost packet and setssthresh

=CWND/2, CWND=ssthresh+3 and then enters in Enter congestion avoidance phase and then

Increment CWND by one for each additional duplicate ACK. When the next Ack. arrives that

acknowledges new data set CWND=ssthresh. And enters in Congestion avoidance phase.

ANALYSIS OF RENO

In the analysis of TCP Reno, we use Linux hosts as communication end points communicatingover

100Mbps link with MTU of 1500 bytes. The RTT of each background traffic is random. The socket

buffer size of some client machines is fixed to default64KB

As per the graph shown, the maximum RTT was around 0.195 sec and a large number of segments got

delays on microsecond scale not visible on minisecond scale. This is due to the LAN based

connectivity with no logical intervention from L2 switchside.

Since RTT estimations don‟t infer the state of congestion in TCP Vegas, these values cant be deployed

for any „practical‟ advantages.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

57

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

We use Linux hosts as communication end points communicating over 100Mbps link with MTU of

1500 bytes. The RTT of each background traffic is random. The socket buffer size of some client

machines is fixed to default 64KB.

The random bursts of data attack on the socket receive buffers and TCP enters into congestion

avoidance mode as per –

ssthresh = CWND/2

CWND = ssthresh + 3

The graph shows that there is sharp increase and successive decrease in the throughput due to AIMD

algorithm. There are a large number of apparent traces showing ssthresh = CWND/2.

The throughput touches the peak of 757.8125 kbps with an immediate corrective congestion window

size afterwards. The nature of the traffic is spiky as per AIMD and it clearly matches the objectives of

the algorithm. The nature is also self similar since every peak is repeated at almost regular intervals.

The peak of 750 kbps and above is repeated after almost 32seconds.

TCP is able to deal with excessive traffic using AIMD pretty well. The sizing constraints of CWND

and ssthresh recursively cut short the possibilities ofcongestion

ii) TCP Vegas :-The major drawback in TCP Reno is that it does not receive fair share of bandwidth. In

TCP Reno while a source does not detect any congestion,it continues to increase its window size by one

during one round trip time obviously the connections with shorter delays can update the connections

with shorter delay can update their window sizes faster than those with longer delays and thus faster

than those with longer delays and thus steal higher bandwidth. It is harmful to the other version of TCP

Connection with longerdelays.

It take the difference between expected and actual flow rates to estimate the available bandwidth in the

network.

Difference = (Expected Rate – Actual Rate)Base RTT. Base RTT = Min. Round Trip Time.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

58

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Expected Rate=CWND/Base RTT.

ActualRate=CWND/RTT

CWND= Current Congestion window

RTT= Actual RTT

when network is not congested , the actual flow rate will be very close to expected flow rate

otherwise Actual rate is smaller than Expected.

TCP Vegas take the difference and on this basis of this difference in flow rate, estimate

congestion level and adjust/update the window size accordingly.

1. First, the source computes the expected flow rate

Expected =CWND/BaseRTT,

where CWND is the current window

size and BaseRTT istheminimum round trip time.

2. Second, the source estimates the current ow rate by using the actual round trip time accordingto

Actual = CWND/RTT , where RTT is the actual round trip time of apacket.

3. The source, using the expected and actual ow rates, computes the estimated backlog inthe

queue from Diff = (Expected Rate-Actual Rate)BaseRTT.

4 Based on Diff , the source updates its window size

Analysis Of Vegas

In the analysis of TCP Vegas, we use Linux hosts as communication end points communicating over

100Mbps link with MTU of 1500 bytes. The RTT of each background traffic is random. The socket

buffer size of some client machines is fixed to default 64KB.

Fig: RTT Graph of Vegas

As per the graph shown, the manimum RTT was around 0.001 sec and maximum RTT was around

0.175

We can calculate the capacity of the pipe as

capacity (bits) = bandwidth (bits/sec) × round-trip time (sec)

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

59

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

This is normally called the bandwidth-delay product. This value can vary widely, depending on the

network speed and the RTT between the two ends.

On similar pattern, TCP Vegas Congestion Control is based on two parameters representing „expected‟

and „actual‟ rate calculated as –:

Difference = (Expected Rate – Actual Rate) * Base RTT.

Base RTT = Min. Round Trip Time.

Expected Rate = CWND/Base RTT.

Actual Rate = CWND/RTT

CWND = Current Congestion window

RTT = Actual RTT

If we analyze our graph that show following parameters.

Here,

Base RTT = 0.001

Current Window size = 65535 bits.

Expected Rate=65535/0.001=65535000

Actual Rate=65535/0.005=13107000

Difference=(65535000-13107000)*0.001=51828

The congestion window is adjusted depending upon the difference between expected and actual sending

rates. Also two thresholds  and  are defined, such that > correspond to having too little and too

much extra traffic in the network, respectively. When Difference < , TCP Vegas increases the

congestion window linearly during the next RTT, and when Difference >, TCP Vegas decrease the

congestion window linearly during the next RTT. The Congestion window is left unchanged when

<Difference <.

Here  =1and =3,

As our Difference >, TCP Vegas decrease the congestion window linearly during the next RTT

Therefore, we can say that TCP Vegas computes Difference and compares it with a unique threshold 

=1; as long as Difference is less than ! and congestion window size is less

than the slow start threshold, the TCP Vegas congestion window is doubled every other round trip

delay. After slow start, TCP Vegas performs the congestion avoidance algorithm.

When TCP Vegas source receives three duplicate acks, it performs fast retransmit and fast recovery as

TCP Reno. Actually, TCP Vegas develops a more refined fast retransmit mechanism based on a fine-

grain clock. After fast retransmit TCP Vegas sets the congestion window to ¾ of the current congestion

window and performs again the congestion avoidance algorithm.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

60

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Fig: Throughput graph of TCP Vegas

iii) Westwood:-TCP Westwood develop two basic concepts: the end to end estimation of the available

bandwidth and the use of such estimate to set the slow start threshold and the congestionwindow.

In TCP Westwood ,the sender continuously computes the connection Bandwidth Estimate (BWE)

Which is defined as the share of bottleneck bandwidth used by the connection BWE is equal to the rate

at which data is received to the receiver or rate of acknowledgement received

After 3 duplicate packet received(packet loss indication) the sender resets the congestion window and

the slow start threshold based on BWE cwin=BWE*RTT. RTT is also required to compute the window

that support the estimated rate BWE

Initially congestion window increments during slow start and congestion avoidance remain the same as

in Reno, that is they are exponential and linear, respectively. A packet loss is indicated by (a) the

reception of 3 duplicate acknowledgements or (b) a expiry of Round Trip Time. TCPWestwood

set cwin and ssthresh asfollows

If (3 DUPACKs are received)

ssthresh=(BWE *RTTmin)/seg_size

if(cwin>ssthresh) /* congestion avoidance*/

cwin=ssthresh

Endif

Endif

In case a packet loss is initiated by a time out expiration. cwin and ssthresh are set as follows:

if(Coarse timeout expires)

cwin=1

ssthresh=(BWE * RTTmin)/seg_size;

If (sstresh<2)

ssthresh=2

endif

endif

International Journal of Advances in Engineering Research

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

61

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Analysis OfWestwood:-

Fig : RTT Graph for TCP Westwood(TCPW)

In the analysis of TCPW, we use Linux hosts as communication end points communicating over

100Mbps link with MTU of 1500 bytes. The RTT of each background traffic is random. The socket

buffer size of some client machines is fixed to default 64KB.

As per the graph shown, the minimum RTT was around 0.001 sec and maximum RTT was around 1sec

We can calculate the capacity of the pipe ascapacity (bits) = bandwidth (bits/sec) × round-trip time

(sec)

This is normally called the bandwidth-delay product. This value can vary widely, depending on the

network speed and the RTT between the two ends.

On similar pattern, TCP Westwood Congestion Control is based on -

(1) congestion window(cwnd)

(2) slow start threshold(ssthresh)

(3) round trip time of the connection(RTT)

(4) minimum round trip time measured by the sender(RTTmin).

We compare two high-speed flows with a different RTT i.e. AIMD and Westwood. We observe the

RTT of both cases as different and check which one is better RTT fair. As per our analysis around

small window sizes, TCPW shows the RTT unfairness. TCPW has window sizes around 200 for

100Mbps. Nonetheless, its RTT unfairness is much better than AIMD where we get a random RTT

scenario.

TCPW in Linux can better handle the congestion scenario under excess traffic. The RTT observed is

less but the number of segments are also low. This shows the combative state of TCP while the socket

receive buffers get continuously overflowed. It shows as if a large number of SYN segments have been

dropped either by socket receive buffer or the congestion window sizing.

International Journal of Advances in Engineering Research

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

62

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Fig : Throughput Graph for TCP Westwood(TCPW)

In the analysis of TCPW Throughput, we use Linux hosts as communication end points communicating

over 100Mbps link with MTU of 1500 bytes. The RTT of each background traffic is random. The

socket buffer size of some client machines is fixed to default 64KB.

The random bursts of data attack on the socket receive buffers and TCP enters into congestion

avoidance mode.

The graph shows that there is an effort to attain a steady state throughput due to Westwood algorithm.

There are apparent traces showing the congestion window to become ¾ of the current congestion

window.

The throughput touches the peak of 312.5 kbps with an immediate corrective congestion window size

afterwards. The nature of the output traffic is almost steady state as there are no sharp increases like

Reno and periodic wedges like vegas and it far better matches the objectives of the congestion control

algorithm. The nature is less self similar in the trace received by us till the congestion collapse was

finally achieved.

TCP Westwood Congestion Control is based on -

(1) congestion window(cwnd)

(2) slow start threshold(ssthresh)

(3) round trip time of the connection(RTT)

(4) minimum round trip time measured by the sender(RTTmin).

The stream of returning ACK packets infer an estimate of connection available bandwidth (BWE).

At the point of congestion,

When 3 DUPACKs are received by the sender

:ssthresh = (BWE * RTTmin) / MSS;

if (ssthresh<2) ssthresh=2;

cwnd = ssthresh;

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

63

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

Here,

RTTmin = 0.001 sec (observed)

MSS = 512 B

BWE = 200 B (on an average)

ssthresh = (200*0.001)/512 < 2

Hence ssthresh = 2

cwnd = 2
This way TCPW in Linux handled a congestion scenario.

On the downside, the throughput does not seem to follow sharp 'additive increase' in congestion

window like Reno and not even like pure AIMD+Vegas. This can be less useful in case of high speed

networks. The congestion window has become more sensitive to congestion but less aggressive in

following 'additive increase'. A peak is observed but a sharp fall follows due to decreaseeffect.

The graph clearly shows that the congestion happened after 180 sec and the congestion window

cautiously controlled it, finally showing a 'multiplicative decrease'. This performance is far better than

all the previously analyzed TCP versions.

As the link bandwidth increases, the measurement-based nature of TCPW allows it to track the

bandwidth variations of the bottleneck and to linearly build-up its performance. AIMD also improves

its performance in same situation but in a less considerableway.

v) TCP CUBIC:-As name suggest it implement cubic function. CUBIC is designed to simplifyand

enhance the window control of BIC.

Wcubic =C(t-K)
3
 + Wmax

C = scaling factor

t = elapsed time from the last window reduction.

Wmax = window size just before the last window reduction.

K=Wmaxß/C where ß is a constant multiplicative decrease factor applied to windowreduction

at the time of loss event (i.e.the window reduces to ßWmax at the time of the lastreduction).

In this the window grows very fast upon a window reduction but as it gets closer to Wmax ,it slows

down the growth. Around Wmax , the window increment becomes zero. Above that, CUBIC starts

probing for more bandwidth in which the window grows slowly initially, accelerating its growth as it

moves away from Wmax.

K=Wmaxß/C where ß is a constant multiplicative decrease factor applied to window reduction

at the time of loss event (i.e.the window reduces to ßWmax at the time of the lastreduction)

In this the window grows very fast upon a window reduction but as it gets closer to Wmax,it slows

downthegrowth.AroundWmax,thewindowincrementbecomeszero.Abovethat,CUBICstarts

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

64

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

probing for more bandwidth in which the window grows slowly initially, accelerating its growth as it

moves away from Wmax.

Analysis of TCP CUBIC:-

In this section, we compare the performance of Linux CUBIC TCP w.r.t. AIMD. In the analysis of

CUBIC,we use Linux hosts as communication end points communicating over 100Mbps link with

MTU of 1500 bytes. The RTT of each background traffic is random. The socket buffer size of some

client machines is fixed to default 64KB.We evaluate CUBIC-TCP and AIMD for the bandwidth

utilization andRTT.

Fig 19: RTT Graph for TCP CUBIC

As per the graph shown ,the minimum RTT was around 0.001 sec and maximum RTT was around 0.18.

The congestion window of CUBIC is determined by

Wcubic=C(t-K)
3
+Wmax

Where,

C=Scaling Factor

t=elapsed time from the last window reduction.

Wmax =window size=β/C

K=3

β= Constatnt Multiplication window decrease factor.

t=0.18

C=0.4 and β=0.8[10]

K=3 65535*08/04=50.7965

Wcubic=0.4(0.18-50.7965)+65535

=13662.601 or 13663 approx.

In this Graph we observe that, CUBIC starts probing for bandwidth in which the window grows slowly

initially, accelerating its growth as it moves away from Wmax. This slows growth Wmax enhances the

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

65

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

stability of the protocol,and increases the utilization of the network while the fast growth away from

Wmax ensures the scalability of the protocol

Fig: Throughput Graph for TCP CUBIC

CUBIC TCP achieves greater utilization then standard duTCP . The Graph shows that there is almost

steady state due to CUBIC. The highest peak of throughput goes to 105000B/s and with an immediate

corrective congestion window size afterwards. Earlier there was some sharp increase and then CUBIC

maintains steady state.

Unlike AIMD,Cubic increases the window Wmax very quickly and then holds the window for a long

time . This keeps the scalibilty of the protocol high, while keeping the epoch long and utilization high.

COMPARATIVE STUDY BETWEEN THESE SCENARIOS.
In this section,we compare the performance of Linux CUBIC, vegas, Reno w.r.t. AIMD. In the analysis

of cubic, we use Linux hosts as communication endpoints communicating over 100Mbps link with

MTU of 1500 bytes.

Fig:-RTT Graph for TCP CUBIC+Vegas+Reno

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

66

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

The RTT of each background traffic is random. The socket buffer size of some client machine is fixed

to default 64KB. We evaluate CUBIC-TCP and AIMD for the bandwidth utilization and RTT.

Fig: Throughput Graph for TCP Cubic+Vegas+Reno

The Throughput touches the peak of 35000 B/s with an immediate corrective congestion window size

afterwards. The nature of the output traffic is almost steady state as there are no sharp increases like

Reno and periodic wedges and it far better matches the objective of the congestion control algorithim .

The nature is less self similar in the trace received by us till the congestion collapse was finally

achieved.

CONCLUSION
TCP RENO

We have analyzed a simple setup of the Linux TCP Reno protocol. It captures the essence of TCP's

congestion avoidance behavior and expresses send rate as a function of loss rate. We analyzed the

behavior of the protocol in the presence of time-outs, and is valid over the entire range ofloss

probabilities. We have compared it with the theoretical model and found that most of these connections

suffered from a significant number of time-outs. Thus, we conclude that time-outs have a significant

impact on the performance of the TCP protocol, and that our model is able to account for this impact. A

number of avenues for future work remain. First, the implementatio can be enhanced to account for the

effects of fast recovery and fast retransmit. Second, we have observed that once a packet in a given

round is lost, all remaining packets in that round are lost as well. The Linux Reno can be modified to

incorporate a loss distribution function. Third, it is interesting to further investigate the behavior of

TCP Reno over slow links with dedicated buffers (such as modemlines).

TCP VEGAS

We analyzed the TCP Vegas behavior and found a need of the modification of the basic TCP Vegas

congestion control in Linux to overcome the mixed TCP Vegas and TCP Reno network scenarios

Linux TCP Vegas reaches better congestion avoidance performance with respect to TCP Reno in quite

anumberoftests.LinuxTCPVegaspreservesthefairnesscharacteristicoftheoriginalTCPVegasin

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

67

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

several ways. When Linux TCP Vegas cannot reach the exact fairness degree of TCP Vegas (actually

TCP Vegas needs slightly larger buffers to reach the fairness, since it naturally tries to force the

stability), it performs a higher throughput, posing itself as a good trade-off between the features of

theory and practice.

A still open issue, not addressed in the present work, is to investigate the behavior of Linux TCP Vegas

in network scenarios with non-persistent sources. Leaving the slow start mechanism of Linux TCP

Vegas unchanged, Linux TCP Reno still appears to take advantage from its much more aggressive

start-up. To allow Linux TCP Vegas to implement TCP Reno‟s slow start would reduce this

disadvantage but it could generate a consequent loss of some TCP Vegas features, like stability and

fairness.

TCP WESTWOOD

In this work, we analyzed the TCP Westwood (TCPW) protocol in Linux. TCPW is a new TCP

scheme, which requires modifications only in the TCP source stack and is thus compatible with TCP

Reno and Tahoe destinations. Basically it differs from Reno in that it adjusts the cwin(congestion

window) after a loss detection by setting it to the measured rate currently experienced by the

connection, rather than using the conventional multiplicative decreasescheme.

We have analyzed with qualitative arguments and with experimental results that the Linux TCPW

converges to “fair share.” At steady state under uniform path conditions. One general concern with is

compatibility towards current implementations. Linux TCPW exhibits some “aggressiveness” due to its

unique window adjustment. However, if there is adequate buffering at the bottleneck, TCPW and Reno

share the channel fairly.

The Linux implementation was developed in order to combat in presence of random errors and under

different scenarios. However, unlike previous TCP versions, the TCPW addresses the bandwidth

estimation mechanism and its impact on system behavior. The results show that, for a single connection

case, Linux TCPW protocol performs better than or, at least, as well as Linux TCP Reno in terms of

congestion avoidance. The results also show that TCPW is more robust under varying buffer size,

round trip delays and bottleneck bandwidth. The multiple connections case is under investigation and

will be considered in the nearfuture.

TCP CUBIC

We analyzed Linux TCP CUBIC which simplifies the BIC-TCP window control and improves its RTT-

fairness. CUBIC uses a cubic increase function in terms of the elapsed time since the last loss event. In

order to provide fairness to Standard TCP, CUBIC also behaves like Standard TCP when the cubic

window growth function is slower than Standard TCP. Furthermore, the real-time nature of the protocol

keeps the window growth rate independent of RTT, which keeps the protocol TCP friendly under both

short and long RTT paths. Through extensive testing, we confirm that CUBIC tackles the shortcomings

of BIC TCP and achieves fairly good congestion avoidance

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

68

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

REFERENCES

1. Allman, M.V. Paxson, and W.Stevens, (1999),‟ TCP congestion Control,‟ Request for

Comments, RFC2581.

2. Andrea Zanella, Gregorio Procissi, Mario Gerla,M.Y. “Medy” sanadidi „ TCPWestwood:

Analytic Model and PerformanceEvaluation‟

3. D.J.Leith and R.N.Shorten(2006) „ Impact of drop synchronization on TCP fairness in high

bandwidth-delay product networks.‟ Workshop on Protocols for Fast Long Distance Networks,

Nara,Japan.

4. D.J.Leith(2003) „Linux Implementation issues in high speed networks.‟ Hamilton Institute

technical Reportwww.hamilton.ie/net/LinuxHoghSpeed.pdf.

5. D.J.Leith, R.N. Shorten, G.McCullagh, (2005) „Experimental evaluation of CUBIC-TCP‟

HamiltonInstitute,Ireland.

6. D.-M. Chiu and R. Jain,(1989), „Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks,‟ Computer Networks and ISDNSystems, vol. 17,

no. 1, pp. 1

7. Evandro de Souza,debAgarwal „ A Highspeed TCP study:Characteristics and Deployment

Issues‟ Lawrence Berkeley National Lab, Berkeley, CA,USA.

8. FEDORA 11. [Online]. Available:http://fedora.redhat.com

9. HabibullahJamal,Kiran Sultan (2008) „Performance Analysis of TCP Congestion Control

Algorithims‟ International Journal of Computers and Communications. Issue 1, Vol2.

10. Injong Rhee, and LisongXu „ CUBIC: A New TCP-Friendly High Speed TCP Variant‟

LincolnNE68588-0115USA

11. J. C. Hoe,(1996) Improving the start-up behavior of a congestion control scheme ofTCP,”

ACMComputer Communication Review, vol. 26, pp. 270–280, Oct. 1996.

12. J. Nagle, (1984), „Congestion Control in IP/TCP Internetworks," IETF RFC896

13. JeonghoonMo,RichardJ.La, VenkatAnantharam, and Jean Warland (1998) „Analysis and

comparison of TCP Reno and Vegas‟eecs.berleley.edu.

14. JitendraPadhye,victorFiroiu,DonaldF.Towsley, James F.Kurose(2000). „Modeling TCP

RenoPerformance : A Simple Model and its Emperical Validation‟ IEEE/ACM Transaction on

Networking Vol.8.No.2. April2000

15. Joachim charzinksi,(2000) „HTTP /TCP connection and flow characteristics.Vol.42 issues2-3

16. K.Fall and S.Floyd. (1996)„ Simulation-based Comparisons of Tahoe, Reno, and SACK TCP

ACM Computer Communication review26(3)

17. L. S. Brakmo, S. W.O‟Malley, and L. L. Peterson, (1994) „TCP Vegas: New techniques for

congestion detection and avoidance‟ ACM SIGCOMM’94.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/
http://www.hamilton.ie/net/LinuxHoghSpeed.pdf
http://fedora.redhat.com/

69

International Journal of Advances in Engineering Research

International Journal of Advances inEngineeringResearch

 http://www.ijaer.com

(IJAER) 2012, Vol. No. 4, Issue No.II,August ISSN:2231-5152

18. LisongXu, khaledHarfoush, and Injong Rhee „ Binary Increase Congestion Control for Fats

Long Distance Networks‟ NSF CAREER ANI-987651,NSFANI-0074012

19. Luigi A. Grieco and SaverioMascolo,(2004)„ Performance Evaluation and Comparison of

Westwood+, New Reno, and Vegas TCP Congestion Control‟ ACM CCR,vol.34No.2.

20. M.Fisk and W Feng, (2001) „Dynamic right-sizing in TCP, Los Alamos Computer Science

InstituteSymposium,

21. MarioGerla. M.Y.Sanadidi,Ren Wang and Andrea Zanella, Claudio Casetti „ TCP Westwood:

Congestion Window Control Using Bandwidth Estimation‟ Computer Science Dept.,University

of California, Los Angeles(UCLA)

22. PasiSarolathi, Alexey Kuznetsov(1999) „Congestion Control in Linux TCP‟ IEEE/ACM

Transaction on NetworkingVol.8.No.2.

23. R. Stevens,(1994), „TCP/IP Illustrated,’ Volume 1: The Protocols.Addison-Wesley,

24. S S.ShenkerL. Zhang, and D. D. Clark, (1990)„Some observations on the dynamics of a

congestion control algorithim‟ ACM Computer Communication Review, vol. 20, pp.30–39,

25. S.Floyd (Dec,2003) „Highspeed TCP fro Large Congestion Windows‟ RFC3649

26. S.Keshav,(2002), „An engineering approach of ComputerNetworking‟

27. SangtaeHa,Injong Rhee, LisongXu (2005)„ CUBIC: A New TCP Friendly High-Speed TCP

Variant‟nscu.edu

28. SaverioMascolo and Francesco Vacirca (2001), „Issues in Performance Evaluation of New TCP

Stacks in HighSpeed‟.

29. Steven Low, Larry Peterson and Limin Wang Princeton University (February ,2000) „

Understanding TCP Vegas: Theory and Practice‟ TR616-00

30. T. Iguti, G. Hasegawa, and M. Murata (2005), „A new congestion control mechanism of TCP

with inline network measurement‟ The International Conference on InformationNetworking

(ICOIN) 2005, pp.109–121,

31. Van Jacobson, (1988), „Congestion Avoidance and Control‟, Proceedings of the Sigcomm '88

Symposium, vol.18 (4): pp.314–329. Stanford,CA.

32. Vendictis , Andrea Baiocchi,MichelaBonacci(2003) „ Analysis and Enhancement of TCP Vegas

Congestion Control in a Mixed Vegas and TCP Reno Network Scenario‟ Vol.53 No.4pp 225-

253.

http://www.ijaer.com/
http://www.ijaer.com/
http://www.ijaer.com/

